A model for the generation of localized transient [Na+] elevations in vascular smooth muscle.
نویسندگان
چکیده
We present a stochastic computational model to study the mechanism of signaling between a source and a target ionic transporter, both localized on the plasma membrane (PM). In general this requires a nanometer-scale cytoplasmic space, or nanodomain, between the PM and a peripheral organelle to reflect ions back towards the PM. Specifically we investigate the coupling between Na(+) entry via the transient receptor potential canonical channel 6 (TRPC6) and the Na(+)/Ca(2+) exchanger (NCX), a process which is essential for reloading the sarcoplasmic reticulum (SR) via the sarco/endoplasmic reticulum Ca(2+)ATPase (SERCA) and maintaining Ca(2+) oscillations in activated vascular smooth muscle. Having previously modeled the flow of Ca(2+) between reverse NCX and SERCA during SR refilling, this quantitative approach now allows us to model the upstream linkage of Na(+) entry through TRPC6 to reversal of NCX. We have implemented a random walk (RW) Monte Carlo (MC) model with simulations mimicking a diffusion process originating at the TRPC6 within PM-SR junctions. The model calculates the average Na(+) in the nanospace and also produces profiles as a function of distance from the source. Our results highlight the necessity of a strategic juxtaposition of the relevant ion translocators as well as other physical structures within the nanospaces to permit adequate Na(+) build-up to initiate NCX reversal and Ca(2+) influx to refill the SR.
منابع مشابه
Enhanced expression of transient receptor potential channel 3 in uterine smooth muscle tissues of lipopolysaccharide-induced preterm delivery mice
Objective(s): We aimed to investigate the influence of transient receptor potential channel 3 (TRPC3) on lipopolysaccharide-induced (LPS) preterm delivery mice. Materials and Methods: Mice were randomly assigned to the four groups: an unpregnant group, a mid-pregnancy group (E15), a term delivery group, and an LPS-induced preterm delivery group (intraperitoneal injection LPS at 15 days). Uterin...
متن کاملMitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells.
Subplasmalemmal ion fluxes have global effects on Ca(2+) signaling in vascular smooth muscle. Measuring cytoplasmic and mitochondrial [Ca(2+)]and [Na(+)], we previously showed that mitochondria buffer both subplasmalemmal cytosolic [Ca(2+)] and [Na(+)] in vascular smooth muscle cells. We have now directly measured sarcoplasmic reticulum [Ca(2+)] in aortic smooth muscle cells, revealing that mit...
متن کاملMitochondrial Regulation of Sarcoplasmic Reticulum Ca Content in Vascular Smooth Muscle Cells
Subplasmalemmal ion fluxes have global effects on Ca signaling in vascular smooth muscle. Measuring cytoplasmic and mitochondrial [Ca ]and [Na ], we previously showed that mitochondria buffer both subplasmalemmal cytosolic [Ca ] and [Na ] in vascular smooth muscle cells. We have now directly measured sarcoplasmic reticulum [Ca ] in aortic smooth muscle cells revealing that mitochondrial Na /Ca ...
متن کاملEffect of atrial natriuretic factor on Na+-K+-Cl- cotransport of vascular smooth muscle cells.
We previously demonstrated that vascular smooth muscle cells possess a prominent Na+-K+-Cl- cotransport system that can be markedly stimulated by elevations in levels of intracellular cyclic guanosine 3',5'-monophosphate (cGMP). Since others have shown that atrial natriuretic factor (ANF) can bind to specific membrane receptors and can enhance cGMP levels in vascular smooth muscle cells, we ask...
متن کاملI-6: Remodelling Uterine Spiral Arteries inPregnancy
Background: During the first trimester of pregnancy the uterine spiral arteries that supply blood to the placenta are remodelled, creating heavily dilated conduits lacking maternal vasomotor control. To effect permanent vasodilatation, the internal elastic lamina and medial elastic fibres must be degraded. Failure of remodelling is a key characteristic of the pathological placenta and is though...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 389 3 شماره
صفحات -
تاریخ انتشار 2009